Visually Identifying Rank

David Fouhey, Daniel Maturana, Rufus von Woofles, D.D.

<u>C.H.O.C.O.L.A.T.E Lab, Neurotic Computing Institute</u> <u>Carnegie Mellon University</u>

Approach

A Matrix

A .png

>10

Computer Vision + Machine Learning

Why this shouldn't work

Quantization

Machine Learning Doesn't Work

Did you really do this?

Yes. Every number is a real experiment.

Please don't tell our advisors. Please?

Setup

- 1. 10x10 Matrices
- 2. 10 Ranks
- 3. 1000 (.png) Images / Rank

Does it work?

Learning method f		Random Forest+Engineered				etrained	Scratch CNN	Chance
Feature map ϕ	All Eng.	Gray SIFT BoW	Color SIFT BoW	LBP BoW	$pool_5$	fc7	Raw Pixels	
10-way Rank	38.1%	32.5%	36.5%	31.0%	33.7%	34.9%	43.5%	10%
Rank Deficiency	76.4%	73.1%	75.3%	73.9%	75.0%	76.3%	78.6%	50%

Does it generalize?

Does it generalize?

Train	Test	R	Random Forest+Engineered				etrained	Scratch CNN
Dim.	Dim.	All Eng.	Gray SIFT	Color SIFT	LBP	$pool_5$	fc7	Raw Pixels
	10×10	38.1%	32.5%	36.5%	31.0%	33.7%	34.9%	43.5%
10×10	15×15	33.7%	31.5%	33.5%	27.3%	25.7%	26.1%	37.9%
	30×30	25.9%	19.1%	25.3%	19.4%	17.7%	17.5%	24.1%
$\begin{array}{c} 15\times15\\ 30\times30 \end{array}$	10×10	33.0% 25.8%	28.1% 22.7%	32.0% 23.8%	26.5% 21.6%	13.9% 11.5%	14.4% 11.8%	34.1% 10.0%

Why bother?

- 1. Better than traditional linear algebra
- 2. Lets us answer questions about matrices, linear algebra

Comparison with Linear Algebra

Lin. Algebra: SVD, Determinant,...

Pros:

- 100% Accuracy

Cons:

- Boring
- > O(n^2)
- Requires numbers

Computer Vision: SIFT+RF, CNN

Pros:

- Requires images
- O(n^2)
- Exciting and dangerous

Cons:

- 78.6% Accuracy

What colormap is best?

March 7, 2012

The 'jet' colormap must die! Or: how to improve your map plots and create your own nice colormaps.

endolith commented on May 16, 2012

This is subjective: a matter of sane defaults vs consistency with matlab, but here are the arguments against

Rainbow Color Map (Still) Considered Harmful:

Research has shown that the rainbow color map is rarely the optimal choice when displaying data with a pseudocolor map. The rainbow color map confuses viewers through its lack of perceptual ordering, obscures data through its uncontrolled luminance variation, and actively misleads interpretation through the introduction of non-data-dependent gradients.

What colormap is best?

Jet is #1 MATLAB is vindicated! Bye Bye Haters!

What matrices smell what rank?

Structured outputs: Deep Multiplication

Structured outputs: Deep Inverse

Legacy Matrices

Cellphone Picture

Thank You!

We gratefully acknowledge NVIDIA for GPUs used in this very serious research.