
SIGBOVIK, APRIL 2015 1

Visually Identifying Rank
David F. Fouhey, Mathematicians Hate Him!

Daniel Maturana, Random Forester Rufus von Woofles, Good Boy

Abstract—The visual estimation of the rank of a matrix has eluded researchers across a myriad of disciplines many years. In this
paper, we demonstrate the successful visual estimation of a matrix’s rank by treating it as a classification problem. When tested
on a dataset of tens-of-thousands of colormapped matrices of varying ranks, we not only achieve state-of-the-art performance,
but also distressingly high performance on an absolute basis.

Index Terms—perceptual organization; vitamin and rank deficiencies; egalitarianism in the positive-semi-definite cone; PAC
bounds for SVDs; class-conscious norms

F

(a) (b) (c)

Fig. 1. What are the ranks of these matrices? Which ones
are rank-deficient? In this paper, we investigate how one can
guesstimate the rank of a matrix from visual features alone.
See footnote on page 2 for answer.

1 INTRODUCTION

Consider Figure 1(b): what is the rank of the matrix?
Most people are confused. Some might hazard a
guess. A select collection of professors might say “3.”
The mystery of how professors can visually estimate
the rank of matrices from as little as a brief glance at
a jet-colormap rendering has puzzled researchers in
neuroscience, philosophy, mathematics, and computer
science for decades.

The rank of a matrix M reveals a great deal. By
definition, it tells us how many linearly independent
columns the matrix has; surprisingly, it also tells us
how many linearly independent rows the matrix has,
and if that does not get you excited, I do not know
what will. If we think of M as an operator, the rank
tells us about the dimensionality of its output, and
thus for a square matrix, whether M is invertible.

In this paper, we show how to identify the rank of a
matrix from an image alone. In contrast to past work
on guaranteed solutions to matrix rank computation

• All authors are with The Robotics Institute, Carnegie Mellon
University.
Send us fan mail at:
Neurotic Computing Institute c/o D. Fouhey, A.B. M.S.
EDSH 212
5000 Forbes Avenue
Pittsburgh, PA 15213

that require access to the matrix, our work gives
guarantee-free solutions that can operate on only an
colormapped version of a matrix. By treating matrix
rank as an image classification problem, we are able to
consistently achieve distressingly high performance –
≈ 40% accuracy on 10-way classification; ≈ 80%
accuracy on rank-deficient/not-rank-deficient binary
classification. In subsequent experiments we show the
following: 1) Our method can identify what matrices
seem low rank, and why; 2) Our method is easily
extended to structured prediction; 3) That activations
of our network can be even used as a feature for
semantic image classification with non-embarrassing
performance (20.9% on Caltech 101 with 15 samples).

2 RELATED WORK

In this work, we tackle two problems concerning
a square matrix M ∈ Rn×n. The first is a binary
classification problem: is M full-rank? The second is a
k-way classification problem: what is the rank of M?

Many approaches exist for solving both problems.
In the binary case, for instance, note that a square
matrix is full rank if and only if its determinant is non-
zero. This leads to a straight-forward way to check for
rank deficiency. Similarly, if we let UΣVT = M be
the singular value decomposition of M (i.e., Σi,i = σi
where σi is the ith singular value of M), then the
rank is the number of non-zero singular values. This
permits checking not only for rank deficiency but also
calculating the rank.

While these sorts of approaches enable the accurate
solution of both questions, they (a) require access to
the matrix itself (as opposed to a screen capture or
printout) and (b) have time complexity greater than
O(n2). SVD computation has complexity O(n3) and
determinant calculation is O(n3) with Bareiss [1] or
O(n2.807) with Bunch and Hopcroft [2]. Our work
aims to fix these gaps.

Our method requires only access to a visual repre-
sentation of the matrix, and thus answers the purely

SIGBOVIK, APRIL 2015 2

1 2 3 4 5 6 7 8 9 10

Fig. 2. Examples of matrices of various ranks. Top row: random instances; Bottom row: archtypical examples of
each rank, determined by the most confident classification examples from a pool of 1,000 matrices according to
a classifier.

visual way of computing rank as opposed to the
mechanical way of computing rank. When a professor
says a matrix looks rank-deficient, she is probably
not doing an SVD, but instead using some visual
smell-test (akin to the notion of direct perception as
proposed by psychologist J.J. Gibson [3]); we seek to
emulate this astounding ability.

Our method is O(n2). Feature extraction is only
dependent on the number of pixels for all methods
and thus O(n2). If we are doing binary classification,
it is O(1) and thus the method serves as a guarantee-
free quadratic-time rank-deficiency test. If we do n-
way classification, it depends on the method, but is
arguably O(1) for random forests, which most of our
methods use.

We acknowledge that our work gives no guar-
antees, but computer vision has a long history of
extraordinarily successful algorithms that may not
always be right. The Random Sample Consensus algo-
rithm [4], for instance, can give no guarantees about
its performance on any individual problem instance.
However, it works extraordinarily well in practice,
and the authors have taken it all the way to the
proverbial citation bank with a well-deserved ≈10,000
citations. Similarly effective methods include Simu-
lated Annealing, Iterative Conditional Modes (ICM)
[5], and many others. Our method may not be as
successful, but as presented in Table 1, our method
is surprisingly effective and has a certain je ne sais
quoi.

Our approach of neural-network based approaches
to linear algebra is not itself novel. However, previous
approaches (e.g., [6], [7], [8], among many others)
require direct access to the matrix itself. Our approach,
on the other hand, only gets access to an colormap of
the matrix.

The natural complement to the thematically-related
related work section (as above) is the alphabetically-
related related work section introduced in Fouhey and
Maturana’s seminal work on celebrity-themed learn-
ing [9]. In this paper, we extend this to a word-based

1. Answers first page quiz: a – rank 1; b – rank 3; c – rank 10.

TABLE 1
A comparison of ways to check whether a matrix is rank
deficient. We evaluate methods on their time complexity,
their success rate, whether there is an easy extension to

n-way rank calculation, and their Je Ne Sais Quoi.

Method Complexity Success Multi-class Je ne sais
Name (Time) Rate Extension quoi

SVD O(n3) 100% Yes Minimal
Det. O(n2.807) 100% No Kinda
CNN O(n2) 78.6% Yes Tons

related work section. A highly related technique is the
rank transform proposed by Zabih and Woodfill [10].
This method replaces each pixel by its “neighborhood
rank” to achieve invariance to monotonic illumination
differences. We employ a related technique, Local Bi-
nary Patterns [11] to extract features for our classifiers.
Also related are learning-to-rank algorithms such as
support vector ranking [12].

3 TECHNICAL APPROACH
We now introduce the method in simple English to
illustrate its simplicity. We take a matrix, visualize it
as a picture (like a.png), and feed it into a standard
image classification pipeline. More formally, we create
a fixed-length feature representation φ of the image,
and learn a mapping f that maps the representation to
a set of discrete classes. For instance, we might extract
standard image features like SIFT as φ, and apply a
standard technique like Random Forests or SVM to
learn an f . Similarly, we might train a convolutional
neural network (CNN) to predict the rank, serving as
both φ and f . This classifier is simply trained on a
collection of random matrices. We note that one ele-
gant aspect of our method is that rank-deficiency and
classification are encapsulated in the same learning
formulation.

3.1 Features and Learning Method
In this paper, we apply standard image classification
machinery by substituting in various standard fea-

SIGBOVIK, APRIL 2015 3

TABLE 2
Quantitative results on visual rank problems. Our paradigm of rank-prediction works surprisingly well across a myriad of

features and learning methods.

Learning method f Random Forest+Engineered RF + Pretrained Scratch CNN Chance
Feature map φ All Eng. Gray SIFT BoW Color SIFT BoW LBP BoW pool5 fc7 Raw Pixels

10-way Rank 38.1% 32.5% 36.5% 31.0% 33.7% 34.9% 43.5% 10%
Rank Deficiency 76.4% 73.1% 75.3% 73.9% 75.0% 76.3% 78.6% 50%

tures and learning methods for φ and f .
Shallow Learner + Features: Features (φ): The first
feature type we use is standard hand-engineered fea-
tures in the form of a bag-of-words (i.e., histogram)
representation over dense SIFT [13] and Local Binary
Patterns (LBP) [11]. To quantize SIFT, we build a
codebook with k-means; each extracted SIFT feature
is represented by the nearest cluster center (i.e., hard
assignment). Thus, each image is mapped to one or
more histograms of codewords; we concatenate his-
tograms when using multiple representations. We also
experiment with using the responses of a standard
convolutional neural network – Alexnet [14] – pre-
trained on the Imagenet dataset [15]. We use the
standard pool5 and fc7 features.

Learning Methods (f): We work with random forests
[16] although our method is entirely generic. In this
method, an ensemble of decision trees is trained inde-
pendently. During learning, splitting occurs on a ran-
dom subset of features and occurs until a minimum
number of samples is in a leaf. Whenever training,
we do 5-fold cross-validation on the training data
and select the values for both parameters (number
of features considered, minimum node size) that give
maximum mean performance.
Deep Learning: In keeping with the spirit of the
deep learning times, we train a CNN to map directly
from pixels to matrix rank. We refer to this as a
Scratch CNN in the experiments since it is learned
from scratch. Our experiments use a small amount of
data, so we adapt a network designed for the MNIST
dataset [17] that appears in the examples for [18].
Starting with all images resized to 60×60, our network
has architecture C(5, 20) → P (4, 3) → C(5, 50) →
P (4, 3) → C(4, 500) → R → softmax, where C(k, n)
denotes a convolutional layer with n filters of size
k× k, P (k, s) is max-pooling over a k× k region with
stride s, and R is a rectified linear unit. Empirically,
we found that the more aggressive max-pooling than
usual helped the network generalize to matrices of
other dimensions.

3.2 Implementation Details
We used Piotr Dollar’s toolbox [19], Vedaldi et al.’s
VLFeat [20], MatConvNet [18], and LIBSVM [21].
SIFT: We extract and quantize SIFT on both the gray
image and each of the R, G, and B channels separately;
each codebook has 256 entries and one codebook is

generated on training data per channel. The code-
books are learned once on the 10 × 10 training set.
Scratch CNN: We use a learning rate of 10−3 in a
standard gradient-descent+momentum approach and
1M iterations; to prevent overfitting, we use the first
iteration to have validation error within 1% of the final
validation error.

4 EXPERIMENTS

We now rigorously evaluate our approaches for vi-
sually guesstimating rank-related matrix properties.
Every figure and table in this section represents a true
experiment and actual results. We do not mess around.

4.1 Dataset

We perform our experiments on a dataset of 10 × 10
matrices, with 2000 examples of each rank 1, . . . , 10,
which we split evenly into train and test. When doing
binary rank-deficiency classification, we balance class
distributions by downsampling the rank deficient
class. We generate these matrices by first sampling a
matrix M with entries uniformly and independently
sampled from the interval [0, 1]. We then compute
its SVD M = UΣVT and set Σ̃ to Σ but with the
r + 1, . . . , nth entries to 0 and compute UΣ̃VT .

We convert each matrix to a 100×100 image, which
we store as a PNG. This is done in MATLAB by calling
the underlying colormapping functionality used by
imagesc and then upsampling with nearest neighbor.
In this paper, we primarily use the traditional and
often criticized jet colormap, but we also experiment
with two linear colormaps, copper and bone. All
colormaps have 255 possible values and are scaled by
the min and max of the matrices (i.e., the default of
imagesc, where no absolute scale is imposed). Note
that the many matrices of a variety of ranks may
map to the same colormap visualization due to both
colormap and PNG quantization.

4.2 Experiments – Features

In this section, we ask the question: what visual
features are best suited for visually identifying the
rank of a matrix? Is color a useful cue? It was argued
in [22] that off-the-shelf pre-trained CNN features
are an astoundingly effective baseline for any generic
vision task – does this include profoundly unnatural

SIGBOVIK, APRIL 2015 4

Jet (38.1%) Bone (35.2%) Copper (33.6%)

Fig. 3. Confusion matrices and accuracies for different
colormaps on the 10-way rank classification problem using
dense SIFT and LBP. Note that while there is variation,
performance is decidedly above chance across colormaps.

images such as color-mapped matrices? Does learning
a specialized CNN work on this task?

We present results in Table 2 showing the perfor-
mance of various features. In the hand-engineered
category, grayscale SIFT seems to perform on par
with LBP; adding color considerably improves per-
formance; and using all features does the best. The
pretrained CNN does well despite the giant domain
shift with both layers do slightly better than grayscale
SIFT. However, in keeping with current results in
computer vision, training a CNN from scratch consis-
tently does the best. Note, however, that all feature and
method combinations operate at significantly above chance-
level.

4.3 Experiments – Colormaps
One natural question is whether the colormapping
scheme affects the visual discrimination between ma-
trices of different ranks. The jet colormap (e.g., Figs.
1, 5) in particular has received a lot of criticism for
being difficult to interpret in practice by humans. Lin-
ear colormaps (i.e., smoothly varying from one color
to another) in theory make for easier interpretation by
humans. We see whether this holds true for computers
as well. We compare the jet colormap (named for
its origin in astrophysical fluid jet simulation) with
copper and bone. The etymology of copper is –
we hope for the reader’s sake – obvious; bone is so
named because it looks somewhat like an X-ray and
is popular because it lets researchers like us try to
pretend to be brain-surgeons.

We run our learning method on matrices with a
variety of colormaps and report 10-way classification
results in Fig. 3 and 4. Generally, jet does the best.
The only representation on which it does appreciably
worse is the pre-trained CNN; we hypothesize this is
because the linear colormaps produce more natural
images, whereas the jet colormap’s outputs look like
noise. Using grayscale SIFT, the results are roughly
comparable, which is somewhat surprising as jet is
known to convert poorly to grayscale. Nonetheless,
while these differences exist, one consistent pattern
is that the proposed method works surprisingly well
across all colormaps.

(P) 3 / (A) 1 (P) 10 / (A) 2 (P) 2 / (A) 10
Predicted / Actual Rank

Fig. 5. Failure cases: some deceptive matrices with their
(P)redicted and (A)ctual ranks, selected from the most confi-
dent mistakes of a RF classifier using dense SIFT and LBP
features.

4.4 Experiments – Cross Domain
One recent pressing concern in the computer vision
community is the biased nature of datasets: models
learned on one dataset might not perform even rea-
sonably on another, as reported in [23]. In our case,
one might wonder whether a model learned to predict
the rank of a 10 × 10 matrix (with a fixed set of
ranks 1, . . . , 10) can generalize to matrices of different
sizes (e.g., 30 × 30). To answer this, we train a 10-
class random forest on square matrices of dimensions
10, 15, and 30, and test them on different sizes; bag-
of-word features are generated using the 10 × 10
matrix codebooks. These new matrix images have
dimensions 150 × 150 and 300 × 300 respectively to
maintain scale for the SIFT features. CNNs require a
fixed input, and so we cannot apply this scaling trick
to them.

We train a model to predict ranks 1, . . . , 10 for all
matrix sizes involved and report results in Table 3.
Our method does surprisingly well, performing at
around 2.5× chance-level when training on 10 × 10
matrices and testing on 30 × 30 matrices and vice-
versa. The scratch CNN generalizes well, with the
exception of the 30 × 30 scratch CNN on 10 × 10
data, which operates at chance level. This is poor
generalization as opposed to a bad model to start
with: the same model gets 49.7% when testing on
30×30 and 14.6% on 15×15. We believe generalization
could be improved by developing an architecture that
would enable the row-to-pixel ratio to be constant.

5 DISCUSSION

The success of such a simple approach raises a num-
ber of questions, but our method also enables answer
to some of these. For instance, we can see what makes
a matrix smell rank deficient by analyzing the learned
relationship between φ and f . We now discuss a few
of these questions as well as extensions.

5.1 What does an archetypical rank-k matrix look
like and which matrices are tricky to classify?
We can answer each of these questions by looking at
the classifier scores; by looking at the most confident

SIGBOVIK, APRIL 2015 5

All E. BoWC BoWg LBP P5 FC7 Scratch All E. BoWC BoWg LBP P5 FC7 Scratch All E. BoWC BoWg LBP P5 FC7 Scratch
0

5

10

15

20

25

30

35

40

45

50

Colormap + Method

1
0
−

w
a
y
 A

c
c
u
ra

c
y

Fig. 4. What colormap is best for predicting matrix rank? (Left to right: jet, bone, copper). While Jet has been criticized
widely compared to linear colormaps, it produces the best results with color sift and the from-scratch CNN

TABLE 3
Cross-domain performance: We report the accuracy of the methods on 10-way classification. Although chance on this task

is 10%, most of our methods perform substantially better than chance.

Train Test Random Forest+Engineered RF + Pretrained Scratch CNN
Dim. Dim. All Eng. Gray SIFT Color SIFT LBP pool5 fc7 Raw Pixels

10× 10
10× 10 38.1% 32.5% 36.5% 31.0% 33.7% 34.9% 43.5%
15× 15 33.7% 31.5% 33.5% 27.3% 25.7% 26.1% 37.9%
30× 30 25.9% 19.1% 25.3% 19.4% 17.7% 17.5% 24.1%

15× 15
10× 10

33.0% 28.1% 32.0% 26.5% 13.9% 14.4% 34.1%
30× 30 25.8% 22.7% 23.8% 21.6% 11.5% 11.8% 10.0%

mistakes of the classifier, we can find the most rank-
deceptive matrices. We present some archetypical ma-
trices in Fig. 2 according to RF classifier using all
features. While the rank 1 matrix archetype is under-
standable, ranks 2 and up seem inscrutable. Nonethe-
less, the model is perfectly confident in its assessment
of these matrices and is correct a surprising amount of
time. Fig. 5 shows the model’s confident mistakes. On
the left, for instance, is shown a rank-1 matrix with
not too much apparent inter-row/column similarity
that was mistakenly predicted to rank 3 by the RF.

5.2 What parts of matrices tell us rank?

Given our bag-of-words model, we can answer this
by figuring out which codewords help the most in
predicting rank as well as their sign (i.e., which codes
are most associated with rank-1 rather than rank-10).
We solve both by learning a L2-regularized logistic
regression model to predict Rank-i or Rank-j, which
we solve with LIBLINEAR [24]. The regularization
parameter λ is selected via 5-fold cross-validation to
give best average performance. The coefficients of the
model w in terms of magnitude and sign indicate
which codewords are indicative of rank deficiency.

We can visualize the informative regions of matrices
by replacing pixels with the weight vector of their as-
sociated codewords. We show a few examples of this
for low rank and high rank matrices using grayscale
SIFT in Fig. 6. For rank 1, the regions associated with
low rank have low frequency, and the codewords
associated with high rank occur mainly at the sharp
transition from the penultimate and blue column to
the last column. The other ranks are a bit harder to

Image All High Weight

Rank 1

Rank 2

Rank 10

Fig. 6. A visualization of what makes a matrix look rank-
deficient according to gray-scale SIFT. We train a logistic
regressor to predict rank-k vs. full rank and plot weight-vector
coefficients onto the image wherever the codeword appears.
Blue is low rank, red high.

interpret, although the one can note the most strongly
low-rank regions correspond to flat regions.

5.3 Can We Solve Structured Tasks?
So far, our approach of doing mathematics by learning
has only been applied to classification problems. In-

SIGBOVIK, APRIL 2015 6

Fig. 7. Examples from our deep visual multiplication net.

A B Pred. A ·B True A ·B MSE

0.033

0.014

0.012

spired by our success in visual rank estimation, we are
currently exploring the application of our framework
to structured outputs, such as matrices.

In particular, we consider matrix multiplication
and inversion, where for centuries mathematicians
have relied on hand-crafted, shallow methods. Again,
keeping with the times we propose to replace these
methods with visual deep learning. To this end we
designed a deep learning architecture, differing only
in the input for each task: for the multiplication task
we used two M ×M concatenated multiplicands as
input, whereas in the inversion task there is a single
M × M input. The input is connected to two fully
connected layers using ReLU nonlinearities of 512
hidden units each, followed by a fully connected
M × M output layer with no nonlinearity. Dropout
regularization was used in all layers. We generate
5 · 105 training examples for each task. In both cases
we use 3× 3 matrices with each entry independently
sampled from a uniform(0, 1) distribution as input,
and their “true”2 product and inverse as outputs.

We then use this data to train the network with
stochastic gradient descent on a mean square error
(MSE) loss for 100 epochs. Some qualitative predic-
tions on unseen data are shown in Figures 7 and 8.
We found the multiplication task to be easily solved
by our network architecture, but the inversion task
proved much more challenging, as shown by the
higher MSE values. We note that this is analogous to
humans taking Linear Algebra 101.

5.4 Can This Work On Real Data?
One advantage of our method is that it does not
require access to the matrices themselves; but what
if we only have a picture of the colormapped matrix?
As a proof of concept, we took a cell-phone picture of
each part of Fig. 1 of this paper, as shown in Fig. 9,
left. We cropped out the matrix from the cell phone
picture, as shown in Fig. 9, right. We then resized

2. At least according to our matrix library.

Fig. 8. Examples from our deep visual matrix inverse net.

A Predicted A−1 True A−1 MSE

0.25

0.49

1.56

1 (92.8%) 10 (48.1%) 10 (45.5%)

Fig. 9. Results on cropped images from cell-phone pictures
of a computer monitor. (Left) sample pre-cropped image;
(right) cropped images, their predicted rank, and posterior
from the scratch CNN.

it and sent it through our scratch CNN. The rank 1
matrix was classified correctly, but both the rank 3 and
rank 10 matrix were classified as rank 10. We note,
however, that all images have perspective distortion
that the CNN did not see at training time.

5.5 Does the matrix rank network generalize?
In our experiments, we confirmed the reports of [22]
that one can use neuron activations from a network
pretrained for classification as a strong feature for a
variety of tasks; but can we use do the reverse? In
other words, can we use activations in our scratch
CNN as a feature for image classification?

To evaluate this, we tested our method on the
Caltech 101 dataset [25]. We used the concatenated
features from the last and second-to-last layers of the
rank network (i.e., the softmax responses and the half-
wave rectified feature map immediately before) as a
feature representation. We then trained a multiclass
SVMs (1v1, linear kernel) on top of these representa-
tions. We report results in Table 4; results are averaged
over 1K random samplings of train sets; for test,
we use an equal number per-class. While far from
state-of-the-art, the numbers are respectable given that
the underlying feature representation was trained to
estimate matrix ranks.

6 CONCLUSIONS

In this paper, we introduced a new problem – visual
rank estimation – and demonstrated that it is feasible

SIGBOVIK, APRIL 2015 7

TABLE 4
Results on Caltech 101, training a linear SVM over

responses from our scratch rank CNN. Chance on this
dataset is ≈ 1%.

Samples 5 10 15 20 25
Accuracy 12.6% 17.7% 20.9% 23.3% 25.1%

using conventional image classification approaches.
Our approach is simple and obtains alarmingly high
performance. More importantly, our features also con-
veys understanding by showing us why some ma-
trices just look low rank and what matrices have
surprising rank. We have additionally demonstrated
future directions in the form of structured prediction
and have demonstrated that our rank predictor CNN
can serve as a generic image feature.

REFERENCES

[1] E. Bareiss, “Sylvester’s identity and multistep integer-
preserving Gaussian elimination,” Mathematics of Computation,
vol. 22, no. 102, 1968.

[2] J. Bunch and J. Hopcroft, “Triangular factorization and inver-
sion by fast matrix multiplication,” Mathematics of Computation,
vol. 28, no. 125, 1974.

[3] J. Gibson, The Ecological Approach to Visual Perception. 1979.
[4] M. Fischler and R. Bolles, “Random sample consensus: A

paradigm for model fitting with applications to image analysis
and automated cartography,” Commun. of the ACM, vol. 24,
June 1981.

[5] J. Besag, “On the statistical analysis of dirty pictures,” Journal
of the Royal Statistical Society, Series B (Methodological), vol. 48,
no. 3, pp. 259–302, 1986.

[6] J. J. Hopfield and D. W. Tank, ““Neural” computation of deci-
sions in optimization problems,” Biological Cybernetics, vol. 52,
pp. 141–152, 1985.

[7] M. Kennedy and L. Chua, “Neural networks for nonlinear pro-
gramming,” Circuits and Systems, IEEE Transactions on, vol. 35,
pp. 554–562, May 1988.

[8] A. Cichocki and R. Unbehauen, “Neural networks for solving
systems of linear equations and related problems,” Circuits and
Systems I: Fundamental Theory and Applications, IEEE Transac-
tions on, vol. 39, pp. 124–138, Feb 1992.

[9] D. F. Fouhey and D. Maturana, “The Kardashian Kernel,” in
SIGBOVIK, 2012.

[10] R. Zabih and J. Woodfill, “Non-parametric local transforms for
computing visual correspondence,” in ECCV, 1994.

[11] T. Ojala, M. Pietikainen, and T. Maenpaa, “Multiresolution
gray-scale and rotation invariant texture classification with
local binary patterns,” TPAMI, vol. 24, no. 7, 2002.

[12] T. Joachims, “Optimizing search engines using clickthrough
data,” in KDD, 2002.

[13] D. Lowe, “Distinctive image features from scale-invariant
keypoints,” IJCV, vol. 60, no. 2, pp. 91–110, 2004.

[14] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet
classification with deep convolutional neural networks,” in
NIPS, 2012.

[15] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg,
and L. Fei-Fei, “ImageNet Large Scale Visual Recognition
Challenge,” 2014.

[16] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1,
pp. 5–32, 2001.

[17] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proceedings of the
IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[18] A. Vedaldi and K. Lenc, “Matconvnet – convolutional neural
networks for matlab,” CoRR, vol. abs/1412.4564, 2014.

[19] P. Dollár, “Piotr’s Image and Video Matlab Toolbox (PMT).”
http://vision.ucsd.edu/ pdollar/toolbox/doc/index.html.

[20] A. Vedaldi and B. Fulkerson, “VLFeat: An open
and portable library of computer vision algorithms.”
http://www.vlfeat.org/, 2008.

[21] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support
vector machines,” ACM Transactions on Intelligent Systems and
Technology, vol. 2, pp. 27:1–27:27, 2011. Software available at
http://www.csie.ntu.edu.tw/ cjlin/libsvm.

[22] A. S. Razavian, H. Azizpour, J. Sullivan, and S. Carlsson, “Cnn
features off-the-shelf: an astounding baseline for recognition,”
CoRR, vol. abs/1403.6382, 2014.

[23] A. Torralba and A. A. Efros, “Unbiased look at dataset bias,”
in CVPR, 2011.

[24] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin,
“LIBLINEAR: A library for large linear classification,” Journal
of Machine Learning Research, vol. 9, pp. 1871–1874, 2008.

[25] L. Fei-Fei, R. Fergus, and P. Perona, “Learning generative
visual models from few training examples: An incremental
bayesian approach tested on 101 object categories,” in IEEE
CVPR Workshop of Generative Model Based Vision (WGMBV),
2004.

David F. Fouhey David F. Fouhey received
an A.B. from Middlebury College in Moose
Watching in 2011. He is currently a Ph.D.
student at the Robotics Institute at Carnegie
Mellon University. He likes long walks, Ed-
ward Hopper, macchiatos, Jaffa Cakes, and,
above all, kvetching. In his copious spare
time, he sends fake announcements to the
New York Times’ Wedding Section. He and his
colleagues were awarded the People’s Demo-
cratic Choice Award at SIGBOVIK 2013.

Daniel Maturana Daniel comes from Chile.
Daniel likes Eat’n Park, bicycling, recycling,
and Pabst Blue Ribbon. You won’t believe
the one weird trick that credit card compa-
nies hate that Daniel uses to make money
at home thanks to Obama lowering 10-year
mortgage rates! He and his colleagues were
awarded the People’s Democratic Choice Award
at SIGBOVIK 2013.

Rufus von Woofles Rufus von Woofles is a
good boy, isn’t he. Yesh he is. Rufus obtained
his DoD (Doggy Obedience Diploma), First
Class, from Muddy Paws University. Rufus
is currently the PI of CHOCOLATE Lab at
Carnegie Mellon University, where he leads
research on predicting pizza-delivery-man
appearance. Rufus likes wagging his tail and
belly rubs. Rufus was awarded the People’s
Democratic Choice Award at SIGBOVIK 2013,
but he tore it up.

